384 research outputs found

    On Discovering Electromagnetic Emission from Neutron Star Mergers: The Early Years of Two Gravitational Wave Detectors

    Get PDF
    We present the first simulation addressing the prospects of finding an electromagnetic (EM) counterpart to gravitational wave detections (GW) during the early years of only two advanced interferometers. The perils of such a search may have appeared insurmountable when considering the coarse ring-shaped GW localizations spanning thousands of deg^2 using time-of-arrival information alone. We show that leveraging the amplitude and phase information of the predicted GW signal narrows the localization to arcs with a median area of only ~250 deg^2, thereby making an EM search tractable. Based on the locations and orientations of the two LIGO detectors, we find that the GW sensitivity is limited to one polarization and thus to only two sky quadrants. Thus, the rates of GW events with two interferometers is only ~40% of the rate with three interferometers of similar sensitivity. Another important implication of the sky quadrant bias is that EM observatories in North America and Southern Africa would be able to systematically respond to GW triggers several hours sooner than Russia and Chile. Given the larger sky areas and the relative proximity of detected mergers, 1m-class telescopes with very wide-field cameras are well positioned for the challenge of finding an EM counterpart. Identification of the EM counterpart amidst the even larger numbers of false positives further underscores the importance of building a comprehensive catalog of foreground stellar sources, background AGN and potential host galaxies in the local universe.Comment: Submitted to ApJL, 8 pages, 4 figures, 1 tabl

    NSV 11749: Symbiotic Nova, Not a Born-Again Red Giant

    Get PDF
    NSV 11749 is a little-studied variable star, discovered by W. J. Luyten, which had a long-duration outburst around the year 1903, reaching blue magnitude 12.5 at maximum. Following the outburst, it has apparently been quiescent at about blue magnitude 17 for the past century. It was recently suggested that NSV 11749 may have been a low- or intermediate-mass star that underwent a final helium shell flash, making it temporarily a "born-again" red giant. If so, it would be only the fourth known member of this class, along with V605 Aql, FG Sge, and V4334 Sgr. However, our newly obtained optical and near-IR spectra of the object show that it is instead a symbiotic binary, with strong Balmer and He I-II emission lines, combined with a cool red-giant companion of spectral type M1-2 III. The 1903 outburst was most likely a symbiotic nova event, of which less than a dozen are known at present.Comment: 13 pages, 3 figures, Accepted for publication in PAS

    Intermediate Palomar Transient Factory: Realtime Image Subtraction Pipeline

    Get PDF
    A fast-turnaround pipeline for realtime data reduction plays an essential role in discovering and permitting follow-up observations to young supernovae and fast-evolving transients in modern time-domain surveys. In this paper, we present the realtime image subtraction pipeline in the intermediate Palomar Transient Factory. By using high-performance computing, efficient database, and machine learning algorithms, this pipeline manages to reliably deliver transient candidates within ten minutes of images being taken. Our experience in using high performance computing resources to process big data in astronomy serves as a trailblazer to dealing with data from large-scale time-domain facilities in near future.Comment: 18 pages, 6 figures, accepted for publication in PAS

    Calcium-rich Gap Transients: Solving the Calcium Conundrum in the Intracluster Medium

    Get PDF
    X-ray measurements suggest the abundance of Calcium in the intracluster medium is higher than can be explained using favored models for core-collapse and Type Ia supernovae alone. We investigate whether the Calcium conundrum in the intracluster medium can be alleviated by including a contribution from the recently discovered subclass of supernovae known as Calcium-rich gap transients. Although the Calcium-rich gap transients make up only a small fraction of all supernovae events, we find that their high Calcium yields are sufficient to reproduce the X-ray measurements found for nearby rich clusters. We find the χ2\chi^{2} goodness-of-fit metric improves from 84 to 2 by including this new class. Moreover, Calcium-rich supernovae preferentially occur in the outskirts of galaxies making it easier for the nucleosynthesis products of these events to be incorporated in the intracluster medium via ram-pressure stripping. The discovery of a Calcium-rich gap transients in clusters and groups far from any individual galaxy suggests supernovae associated with intracluster stars may play an important role in enriching the intracluster medium. Calcium-rich gap transients may also help explain anomalous Calcium abundances in many other astrophysical systems including individual stars in the Milky Way, the halos of nearby galaxies and the circumgalactic medium. Our work highlights the importance of considering the diversity of supernovae types and corresponding yields when modeling the abundance of the intracluster medium and other gas reservoirs

    First Detection of Mid-Infrared Variability from an Ultraluminous X-Ray Source Holmberg II X-1

    Get PDF
    We present mid-infrared (IR) light curves of the Ultraluminous X-ray Source (ULX) Holmberg II X-1 from observations taken between 2014 January 13 and 2017 January 5 with the \textit{Spitzer Space Telescope} at 3.6 and 4.5 μ\mum in the \textit{Spitzer} Infrared Intensive Transients Survey (SPIRITS). The mid-IR light curves, which reveal the first detection of mid-IR variability from a ULX, is determined to arise primarily from dust emission rather than from a jet or an accretion disk outflow. We derived the evolution of the dust temperature (Td∼600−800T_\mathrm{d}\sim600 - 800 K), IR luminosity (LIR∼3×104L_\mathrm{IR}\sim3\times10^4 L⊙\mathrm{L}_\odot), mass (Md∼1−3×10−6M_\mathrm{d}\sim1-3\times10^{-6} M⊙\mathrm{M}_\odot), and equilibrium temperature radius (Req∼10−20R_\mathrm{eq}\sim10-20 AU). A comparison of X-1 with a sample spectroscopically identified massive stars in the Large Magellanic Cloud on a mid-IR color-magnitude diagram suggests that the mass donor in X-1 is a supergiant (sg) B[e]-star. The sgB[e]-interpretation is consistent with the derived dust properties and the presence of the [Fe II] (λ=1.644\lambda=1.644 μ\mum) emission line revealed from previous near-IR studies of X-1. We attribute the mid-IR variability of X-1 to increased heating of dust located in a circumbinary torus. It is unclear what physical processes are responsible for the increased dust heating; however, it does not appear to be associated with the X-ray flux from the ULX given the constant X-ray luminosities provided by serendipitous, near-contemporaneous X-ray observations around the first mid-IR variability event in 2014. Our results highlight the importance of mid-IR observations of luminous X-ray sources traditionally studied at X-ray and radio wavelengths.Comment: 9 page, 4 figures, 1 table, Accepted to ApJ Letter

    Infrared emission from kilonovae: the case of the nearby short hard burst GRB 160821B

    Get PDF
    We present constraints on Ks-band emission from one of the nearest short hard gamma-ray bursts, GRB 160821B, at z=0.16, at three epochs. We detect a reddened relativistic afterglow from the jetted emission in the first epoch but do not detect any excess kilonova emission in the second two epochs. We compare upper limits obtained with Keck I/MOSFIRE to multi-dimensional radiative transfer models of kilonovae, that employ composition-dependent nuclear heating and LTE opacities of heavy elements. We discuss eight models that combine toroidal dynamical ejecta and two types of wind and one model with dynamical ejecta only. We also discuss simple, empirical scaling laws of predicted emission as a function of ejecta mass and ejecta velocity. Our limits for GRB 160821B constrain the ejecta mass to be lower than 0.03 Msun for velocities greater than 0.1c. At the distance sensitivity range of advanced LIGO, similar ground-based observations would be sufficiently sensitive to the full range of predicted model emission including models with only dynamical ejecta. The color evolution of these models shows that I-K color spans 7--16 mag, which suggests that even relatively shallow infrared searches for kilonovae could be as constraining as optical searches.Comment: Accepted for Publication in Astrophysical Journal Letter

    A Comparison of Weak Lensing Measurements From Ground- and Space-Based Facilities

    Get PDF
    We assess the relative merits of weak lensing surveys, using overlapping imaging data from the ground-based Subaru telescope and the Hubble Space Telescope (HST). Our tests complement similar studies undertaken with simulated data. From observations of 230,000 matched objects in the 2 square degree COSMOS field, we identify the limit at which faint galaxy shapes can be reliably measured from the ground. Our ground-based shear catalog achieves sub-percent calibration bias compared to high resolution space-based data, for galaxies brighter than i'~24.5 and with half-light radii larger than 1.8". This selection corresponds to a surface density of ~15 galaxies per sq arcmin compared to ~71 per sq arcmin from space. On the other hand the survey speed of current ground-based facilities is much faster than that of HST, although this gain is mitigated by the increased depth of space-based imaging desirable for tomographic (3D) analyses. As an independent experiment, we also reconstruct the projected mass distribution in the COSMOS field using both data sets, and compare the derived cluster catalogs with those from X-ray observations. The ground-based catalog achieves a reasonable degree of completeness, with minimal contamination and no detected bias, for massive clusters at redshifts 0.2<z<0.5. The space-based data provide improved precision and a greater sensitivity to clusters of lower mass or at higher redshift.Comment: 12 pages, 8 figures, submitted to ApJ, Higher resolution figures available at http://www.astro.caltech.edu/~mansi/GroundvsSpace.pd

    Calcium-rich gap transients in the remote outskirts of galaxies

    Get PDF
    From the first two seasons of the Palomar Transient Factory, we identify three peculiar transients (PTF09dav, PTF10iuv, PTF11bij) with five distinguishing characteristics: peak luminosity in the gap between novae and supernovae (M_R ≈ - 15.5 to -16.5), rapid photometric evolution (t_(rise) ≈12-15 days), large photospheric velocities (≈6000 to 11000 km s^(-1)), early spectroscopic evolution into nebular phase (≈1 to 3 months) and peculiar nebular spectra dominated by Calcium. We also culled the extensive decade-long Lick Observatory Supernova Search database and identified an additional member of this group, SN 2007ke. Our choice of photometric and spectroscopic properties was motivated by SN 2005E (Perets et al. 2010). To our surprise, as in the case of SN 2005E, all four members of this group are also clearly offset from the bulk of their host galaxy. Given the well-sampled early and late-time light curves, we derive ejecta masses in the range of 0.4--0.7 M_⊙. Spectroscopically, we find that there may be a diversity in the photospheric phase, but the commonality is in the unusual nebular spectra. Our extensive follow-up observations rule out standard thermonuclear and standard core-collapse explosions for this class of "Calcium-rich gap" transients. If the progenitor is a white dwarf, we are likely seeing a detonation of the white dwarf core and perhaps, even shock-front interaction with a previously ejected nova shell. In the less likely scenario of a massive star progenitor, a very non-standard channel specific to a low-metallicity environment needs to be invoked (e.g., ejecta fallback leading to black hole formation). Detection (or lack thereof) of a faint underlying host (dwarf galaxy, cluster) will provide a crucial and decisive diagnostic to choose between these alternatives

    Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star

    Get PDF
    Every supernova so far observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower-moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining1. Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae. The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the progenitor star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95 to 130 solar masses, which experience the pulsational pair instability. That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required
    • …
    corecore